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Eigenvalue Problems

Consider the following eigenvalue problems

Standard Eigenproblem

Ax = λx

Generalized Eigenproblem

Ax = λBx

where

I λ is a (complex) scalar: eigenvalue

I x is a (complex) vector: eigenvector

I Matrices A and B can be real or complex

I Matrices A and B can be symmetric (Hermitian) or not

I Typically, B is symmetric positive (semi-) definite
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Solution of the Eigenvalue Problem

There are n eigenvalues (counted with their multiplicities)

Partial eigensolution: nev solutions

λ0, λ1, . . . , λnev−1 ∈ C
x0, x1, . . . , xnev−1 ∈ Cn

nev = number of
eigenvalues /
eigenvectors
(eigenpairs)

Different requirements:

I Compute a few of the dominant eigenvalues (largest
magnitude)

I Compute a few λi’s with smallest or largest real parts

I Compute all λi’s in a certain region of the complex plane
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Spectral Transformation

A general technique that can be used in many methods

Ax = λx =⇒ Tx = θx

In the transformed problem

I The eigenvectors are not altered

I The eigenvalues are modified by a simple relation

I Convergence is usually improved (better separation)

Shift of Origin

TS = A+ σI

Shift-and-invert

TSI = (A−σI)−1

Cayley

TC = (A−σI)−1(A+τI)

Drawback: T not computed explicitly, linear solves instead
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Observations to Be Considered

I Various problem characteristics: Problems can be
real/complex, Hermitian/non-Hermitian

I Many formulations: not all eigenproblems are formulated as
simply Ax = λx or Ax = λBx

I Many ways of specifying which solutions must be sought

Goal: provide a uniform, coherent way of addressing these problems

I Internally, solvers can be quite complex (deflation, restart, ...)

I Spectral transformations can be used irrespective of the solver

I Repeated linear solves may be required

Goal: hide eigensolver complexity and separate spectral transform
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Executive Summary

SLEPc: Scalable Library for Eigenvalue Problem Computations

A general library for solving large-scale sparse eigenproblems on
parallel computers

I For standard and generalized eigenproblems

I For real and complex arithmetic

I For Hermitian or non-Hermitian problems

Current version: 2.2.1 (released August 2004)

http://www.grycap.upv.es/slepc

http://www.grycap.upv.es/slepc
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SLEPc and PETSc

SLEPc extends PETSc for solving eigenvalue problems

PETSc: Portable, Extensible Toolkit for Scientific Computation

I Software for the solution of PDE’s in parallel computers

I A freely available and supported research code

I Usable from C, C++, Fortran77/90

I Focus on abstraction, portability, interoperability, ...

I Object-oriented design (encapsulation, inheritance and
polymorphism)

I Current: 2.2.1 http://www.mcs.anl.gov/petsc

SLEPc inherits all good properties of PETSc

http://www.mcs.anl.gov/petsc
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Structure of SLEPc

SLEPc adds two new objects: EPS and ST

EPS: Eigenvalue Problem Solver

I The user specifies the problem via this object (entry point to
SLEPc)

I Provides a collection of eigensolvers

I Allows the user to specify a number of parameters (e.g. which
portion of the spectrum)

ST: Spectral Transformation

I Used to transform the original problem into Tx = θx

I Always associated to an EPS object, not used directly
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SLEPc/PETSc Diagram
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SLEPc Highlights

I Growing number of eigensolvers

I Seamlessly integrated spectral transformation

I Easy programming with PETSc’s object-oriented style

I Data-structure neutral implementation

I Run-time flexibility, giving full control over the solution
process

I Portability to a wide range of parallel platforms

I Usable from code written in C, C++ and Fortran

I Extensive documentation
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Basic Usage

Usual steps for solving an eigenvalue problem with SLEPc:

1. Create an EPS object

2. Define the eigenvalue problem

3. (Optionally) Specify options for the solution

4. Run the eigensolver

5. Retrieve the computed solution

6. Destroy the EPS object

All these operations are done via a generic interface, common to
all the eigensolvers
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Simple Example
EPS eps; /* eigensolver context */
Mat A, B; /* matrices of Ax=kBx */
Vec xr, xi; /* eigenvector, x */
PetscScalar kr, ki; /* eigenvalue, k */

EPSCreate(PETSC_COMM_WORLD, &eps);
EPSSetOperators(eps, A, B);
EPSSetProblemType(eps, EPS_GNHEP);
EPSSetFromOptions(eps);

EPSSolve(eps);

EPSGetConverged(eps, &nconv);
for (i=0; i<nconv; i++) {
EPSGetEigenpair(eps, i, &kr, &ki, xr, xi);

}

EPSDestroy(eps);
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Details: Solving the Problem

EPSSolve(EPS eps)

Launches the eigensolver

Currently available eigensolvers:

I Power Iteration with deflation. This includes:
I Inverse Iteration
I Rayleigh Quotient Iteration (RQI)

I Subspace Iteration with Rayleigh-Ritz projection and locking

I Arnoldi method with explicit restart and deflation

Also interfaces to external software such as ARPACK
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Details: Specification of Options

EPSSetFromOptions(EPS eps)

Looks in the command line for options related to EPS

For example, the following command line

% program -eps_hermitian

is equivalent to a call EPSSetProblemType(eps,EPS HEP)

Other options have an associated function call

% program -eps_nev 6 -eps_tol 1e-8

EPSView(EPS eps, PetscViewer viewer)

Prints information about the object (equivalent to -eps view)
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Run-Time Examples

% program -eps_view -eps_monitor

% program -eps_type power -eps_nev 6 -eps_ncv 24

% program -eps_type arnoldi -eps_tol 1e-8 -eps_max_it 2000

% program -eps_type subspace -eps_hermitian -log_summary

% program -eps_type lapack

% program -eps_type arpack -eps_plot_eigs -draw_pause -1

% program -eps_type blzpack -eps_smallest_real
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Spectral Transformation in SLEPc

An ST object is always associated to any EPS object

Ax = λx =⇒ Tx = θx

I The user need not manage the ST object directly

I Internally, the eigensolver works with the operator T

I At the end, eigenvalues are transformed back automatically

ST Standard problem Generalized problem

shift A+ σI B−1A+ σI
sinvert (A− σI)−1 (A− σB)−1B
cayley (A− σI)−1(A+ τI) (A− σB)−1(A+ τB)
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Accessing the ST Object

The user does not create the ST object

EPSGetST(EPS eps, ST *st)

Gets the ST object associated to an EPS

Necessary for setting options in the source code

Linear Solves. All operators contain an inverse (except B−1A+ σI
in the case of a standard problem)

I Linear solves are handled internally via a KSP object

STGetKSP(ST st, KSP *ksp)

Gets the KSP object associated to an ST

All KSP options are available, by prepending the -st prefix
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More Run-Time Examples

% program -eps_type power -st_type shift -st_shift 1.5

% program -eps_type power -st_type sinvert -st_shift 1.5

% program -eps_type power -st_type sinvert
-eps_power_shift_type rayleigh

% program -eps_type arpack -eps_tol 1e-6
-st_type sinvert -st_shift 1
-st_ksp_type cgs -st_ksp_rtol 1e-8
-st_pc_type sor -st_pc_sor_omega 1.3
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Selecting the Portion of the Spectrum

Extreme eigenvalues:

I Dominant eigenvalues (e.g. principal component analyses)

I Rightmost eigenvalues (e.g. stability problems)

I Smallest eigenvalues (e.g. vibration analyses)

Interior eigenvalues:

I Eigenvalues closest to the scalar σ

I Eigenvalues closest to the imaginary axis

Other:

I All eigenvalues in interval [a, b]
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Current Approach in SLEPc

EPSSetWhichEigenpairs(EPS eps, EPSWhich which)

Specifies which part of the spectrum is requested

which Command line key Sorting criterion

EPS LARGEST MAGNITUDE -eps largest magnitude Largest |λ|
EPS SMALLEST MAGNITUDE -eps smallest magnitude Smallest |λ|
EPS LARGEST REAL -eps largest real Largest Re(λ)
EPS SMALLEST REAL -eps smallest real Smallest Re(λ)
EPS LARGEST IMAGINARY -eps largest imaginary Largest Im(λ)
EPS SMALLEST IMAGINARY -eps smallest imaginary Smallest Im(λ)

I Eigenvalues are sought according to this criterion (not all
possibilities available for all solvers)

I Interior eigenvalues computation supported via spectral
transform
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Computational Interval

It is convenient in some applications to specify a computational
interval [a, b]

Accept only solutions inside (or outside) the interval [a, b]
I Easy to implement

I Internally keep track of converged unwanted eigenpairs

Compute all eigenvalues in the interval [a, b]
I Requires specialized eigensolver, e.g. Lanczos with spectrum

slicing

I Requires computation of inertia for different shifts
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Preserving the Symmetry

In the case of generalized eigenproblems in which both A and B
are symmetric, symmetry is lost because none of B−1A+ σI,
(A− σB)−1B or (A− σB)−1(A+ τB) is symmetric

Choice of Inner Product

I Standard Hermitian inner product: 〈x, y〉 = xHy

I B-inner product: 〈x, y〉B = xHB y

Observations:

I 〈x, y〉B is a genuine inner product only if B is symmetric
positive definite

I Rn with 〈x, y〉B is isomorphic to the Euclidean n-space Rn

with the standard Hermitian inner product

I B−1A is auto-adjoint with respect to 〈x, y〉B
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Complex Symmetric Problems

Consider the complex symmetric eigenvalue problem

Ax = λx , A = AT ∈ Cn×n

Lanczos Method for Complex Symmetric Problems

I Build a complex orthogonal set of vectors: V T
j Vj = Ij

I Obtain a complex symmetric tridiagonal matrix Tj = T T
j

Lanczos can be applied if replacing the standard Hermitian inner
product by the indefinite bilinear form 〈x, y〉 = xT y

I Breakdown occurs if v̂T
j+1v̂j+1 = 0 but v̂j+1 6= 0
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SLEPc Abstraction

These operations are virtual functions: STInnerProduct and STApply
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Example: Computational Electromagnetics

Objective: Analysis of resonant cavities

Source-free wave
equations

∇× (µ̂−1
r ∇× ~E)− κ2

0ε̂r
~E=0

∇× (ε̂−1
r ∇× ~H)− κ2

0µ̂r
~H=0

Target: A few smallest nonzero eigenfrequencies

Discretization: 1st order edge finite elements (tetrahedral)

Ax = κ2
0Bx Generalized Eigenvalue Problem

I A and B are large and sparse, possibly complex

I A is (complex) symmetric and semi-positive definite

I B is (complex) symmetric and positive definite
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Example: Computational Electromagnetics (cont’d)

Matrix A has a high-dimensional null space, N (A)

I The problem Ax = κ2
0Bx has many zero eigenvalues

I These eigenvalues should be avoided during computation

λ1, λ2, . . . , λk︸ ︷︷ ︸
=0

, λk+1, λk+2︸ ︷︷ ︸
Target

, . . . , λn

Eigenfunctions associated to 0 are irrotational electric fields,
~E = −∇Φ. This allows the computation of a basis of N (A)

Constrained Eigenvalue Problem

Ax = κ2
0Bx

CTBx = 0

} where the columns
of C span N (A)
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Deflation Subspaces

EPSAttachDeflationSpace(EPS eps,int n,Vec *ds,PetscTruth ortho)

Allows to provide a basis of a deflating subspace S

The eigensolver works with the restriction of the problem to the
orthogonal complement of this subspace S

Possible uses:

I When S is an invariant subspace, then the corresponding
eigenpairs are not computed again

I If S is the null space of the operator, then zero eigenvalues
are skipped

I In general, for constrained eigenvalue problems

I Also for singular pencils (A and B share a common null space)
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Quadratic Eigenvalue Problem (QEP)

In applications such as the analysis of damped vibrating systems:

(Aλ2 +Bλ+ C)x = 0

Transform the problem to a generalized eigenproblem by increasing
the order of the system, e.g. defining v = [λx, x]T[

−B −C
I 0

]
v = λ

[
A 0
0 I

]
v

PETSc’s shell matrices can be used to represent blocked matrices
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Singular Value Decomposition (SVD)

Given A ∈ Rm×n, compute orthogonal matrices U ∈ Rm×m,
V ∈ Rn×n such that

UTAV = diag(σ1, . . . , σp)

with p = min{m,n} and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

Equivalent eigenvalue problems:

ATAvi = σ2
i vi

Poor accuracy for small σi’s

[
0 A
AT 0

] [
ui

vi

]
= σi

[
ui

vi

]

Again, shell matrices can be used (template example ex8.c)
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Singular Value Decomposition (SVD)

Alternative to the previous approaches:

Lanczos Bidiagonalization (Golub and Kahan, 1965)

I Two orthogonal sets of Lanczos vectors: uj and vj

I Three-term recurrences associated to A and AT

I Lower bidiagonal matrix Bj

Possible implementation in SLEPc

I Specialized solver associated to the lanczos eigensolver

I Used when ProblemType = EPS SVD

I Use a templated scheme if no specialized solver is available
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Example: Nuclear Engineering

Modal analysis of nuclear reactor cores

Objectives:

I Improve safety

I Reduce operation costs

Lambda Modes Equation

Lφ = 1
λMφ

Target: modes associated to largest λ

I Criticality (eigenvalues)

I Prediction of instabilities and
transient analysis (eigenvectors)
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Example: Nuclear Engineering (cont’d)

Discretized eigenproblem[
L11 0
−L21 L22

] [
ψ1

ψ2

]
=

1
λ

[
M11 M12

0 0

] [
ψ1

ψ2

]
Can be restated as

Nψ1 = λL11ψ1 , N = M11 +M12L
−1
22 L21

I Generalized eigenvalue problem

I Matrix N should not be computed explicitly

I The adjoint problem has to be solved also: this amounts to
computing the left eigenvectors
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Left Invariant Subspaces

Can be computed with Two-sided Eigensolvers

I Non-symmetric Lanczos

I Two sets of Lanczos vectors: vj (right) and wj (left)

I Bi-orthogonality condition: W T
j Vj = Ij

I Also two-sided variants of other eigensolvers: RQI, Arnoldi, JD

Proposed implementation in SLEPc

I EPS attribute SolverClass = { EPS ONE SIDE, EPS TWO SIDE}
I Requirements: Storage for left vectors and y = ATx operation

Other applications

I Reduced-order modeling of Linear Time-Invariant (LTI)
systems with multiple inputs and outputs
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More advanced eigensolvers

Block/band algorithms

I Support for multi-vectors in PETSc is quite basic

I Efficiency gain may be moderate

Restart techniques

I Implicit restart (Sorensen, 1992)

I Krylov-Schur restart (Stewart, 2001)

Preconditioned eigensolvers

I Jacobi-Davidson, Preconditioned Conjugate Gradient,
Preconditioned Lanczos, ...

I Need to figure out how these can coexist with ST

Multilevel eigensolvers: AMLS
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Higher Algorithmic Level

Some applications require to solve many successive eigenproblems

I Family of slightly perturbed eigenproblems

I Nonlinear or parameter dependent eigenvalue problems

I Eigenpath continuation (e.g. bifurcation analysis)

Potentially useful high-level algorithmic schemes:

I Initial approximation to the solution
I Single initial vector is not sufficient
I Krylov recycling: reuse all the information available from

previous problem

I Homotopy method for eigenpath continuation
I Especially useful in the case of symmetric problems
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Concluding Remarks

SLEPc 2.2.1 (current version)

I General library for the solution of eigenvalue problems

I Basic eigensolvers plus spectral transformation

I Flexibility that enables to solve (not-so-simple) standard and
generalized problems

SLEPc 2.2.2 (next release)

I Support for two-sided eigensolvers

I Block/band variants of some solvers

I Partial support for computational intervals

Future directions

I More modern eigensolvers (implicit restart, preconditioned, ...)
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Thanks!

http://www.grycap.upv.es/slepc

slepc-maint@grycap.upv.es

http://www.grycap.upv.es/slepc
slepc-maint@grycap.upv.es
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